Differences in Ig replacement therapy dosing in patients with Common Variable Immunodeficiency in Europe: Results from the ESID Database

Gathmann B¹; Mahlaoui N²; Warnatz K¹; Kuijpers TW³; Kilic SS⁴; Thon V⁵; Arkwright PD⁶; Kumararatne D⁷; Exley A⁸; Borte M⁹; Jones A¹⁰; Belohradsky BH¹¹; Baumann U¹²; Kütükcüler N¹³; Witte T¹⁴; Feighery C¹⁵; Wagström P¹⁶; Longhurst HJ¹⁷; Linde R¹⁸; Ritterbusch H¹; Farmaki E¹⁹; Sediva A²⁰; Papadopoulou-Alataki E²¹; Panahloo Z²²; Grimbacher B²³

¹Centre of Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Germany, ²CEREDIH: The French PID study group, Unité d'Immuno-Hématologie & Rhumatologie pédiatriques, Hôpital Necker-Enfants Malades, Paris, France, ³Emma Children's Hospital, Academic Medical Centre (AMC), Amsterdam, Netherlands, 4Bursa, Uludag University Medical Faculty, 5t. Anne University Hospital, Czech Republic, 6University of Manchester, United Kingdom, 7Cambridge University Hospital NHS Trust, (Addenbrooke's), United Kingdom, 8Cambridge University Health Partners, Papworth Hospital NHS Foundation Trust, United Kingdom, 9Children's Hospital, Municipal Hospital YSt Georg', Academic Teaching Hospital of the University of Leipzig, Germany, ¹⁰Institute of Child Health/Great Ormond Street Hospital, London, United Kingdom, ¹¹Dr v. Haunersches Kinderspital, Ludwig Maximilians University, Munich, Germany, ¹²Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany, ¹³Ege University, Faculty of Medicine, Dept of Pediatric Immunology, Bornova, Izmir, Turkey, ¹⁴Department of Clinical Immunology, Hannover Medical School, Germany, ¹⁵Department of Immunology, Trinity College Dublin & St. James' Hospital, Dublin, Ireland, ¹⁶Ryhov County Hospital, Jönköping, Sweden, ¹⁷Barts and the London NHS Trust, London, United Kingdom, ¹⁸J.W. Goethe University Hospital, Immunodeficiency Unit, Germany, ¹⁹Pediatric Immunology Referral Center, 1st Dept of Pediatrics, Aristotle University of Thessaloniki, Greece, ²⁰Department of Immunology, University Hospital Motol, Prague, Czech Republic, 21 Aristotle University of Thessaloniki, Greece, 22 Medical Science Department, CSL Behring, Haywards Heath, UK, 23 Royal Free Hospital & University College London, London, United Kingdom

Abstract

Rationale

 Common variable immunodeficiency (CVID) is characterised by low levels of serum immunoglobulins and increased susceptibility to infections. Standard therapy for patients is immunoglobulin (Ig) replacement.

Methods

 In a retrospective analysis by country, we analysed CVID patients within the ESID Database for Primary Immunodeficiencies. Actual dosing with intravenous (IVIg) and subcutaneous (SCIg) products was compared to the recommended dose. We used 600 mg/kg bw/month as the recommended dose, as this is the midpoint between the recommended 400 and 800 mg/kg bw/month. Results represent the median percentage difference from this figure for IVIg (n=547 patients), SCIg (n=273) and total Ig patients (IVIg and/or SCIg route, n=647) for each country.

Results

 There was wide regional variation in values for IVIg (p<0.001), SCIg (p=0.004) and total Ig patients (p<0.001). The majority of countries prescribed doses lower than 600 mg/kg bw/ month for IVIg such as Czech Republic (-46%) and Germany (-43%). The Netherlands (-5%) and Greece (+5%) showed the least variation. The prescribed doses for SCIg showed a similar picture, with the lowest doses in Czech Republic (-64%), Germany (-32%), France (-25%), the UK (-22%) and Sweden (-16%), whilst dosing levels were slightly higher only in Greece (+8%). Overall, the variations in dosing were similar with IVIg and SCIg (median: -22% vs. -26%; p=0.02).

Conclusions

• This analysis indicates a wide regional variation in dosing of Ig replacement therapy across Europe which requires further investigation of clinical phenotypes, adjunctive treatments (e.g., antibiotics), Ig serum levels achieved, and, most importantly, clinical outcomes.

Introduction

- Common variable immunodeficiency (CVID) is a primary immunodeficiency disease (PID) characterised by low levels of serum immunoglobulins (Ig) and increased susceptibility to infections.
- Ig replacement therapy is the treatment of choice for CVID. It can be administered either intravenously (IVIg) or subcutaneously (SCIg).
- The European Society for Immunodeficiencies (ESID) has established an internet-based patient database which is a collaboration between treatment centres across Europe.
- The aim of this analysis was to compare the recommended and actual doses of Ig replacement therapy received by patients with CVID in different patient subgroups, using data from the ESID Database.

Methods

Study design

- Originally, data collected by the ESID Database between 2004 and 2010 were retrospectively analysed. Patients were included in the cohort based on the availability of the necessary data items. For this poster, we repeated the original analysis and included additional data collected in the meantime (September 2010 to January 2011). In total, we analysed 1562 intervals from 841 patients.
- As stated in the abstract, we used a recommended dose of 600 mg/kg bodyweight (bw)/month as a benchmark in the original analysis and the results were presented as deviations from this. However, the results suggested that this benchmark did not reflect the reality of Ig dosing. Therefore, we have decided to present the results as absolute numbers.
- Patients were analysed in three groups according to the route of Ig administration: IVIg, SCIg and the total cohort (note: a subset of the total cohort received both IVIg and SCIg in their lifetime, but not simultaneously).
- Dosing variations were compared between:
- Countries Iq treatment routes
- Age groups (patients aged <12 years, 12–17 years) and ≥18 years)
- Patients with bronchiectasis versus patients without bronchiectasis

Statistical methods

• Doses of Ig were converted to a relative unit of dose/ kg bw. Dose frequency was calculated as mg/kg bw/ month

- SCIg concentrations were assumed to be 160 mg/mL (three out of the four currently available SCIg products have a concentration of 160 mg/mL, one has a concentration of 165 mg/mL).
- Many patients changed their doses throughout their treatment, therefore, data were analysed at the treatment dose level (i.e., one value every time the dose or drug changed).
- The Kruskal-Wallis test was used to compare dosing differences between countries and between age groups.
- The Mann-Whitney test was used to compare the dosing difference between: 1) the IVIg and SCIg groups; and 2) patients with or without bronchiectasis.
- Statistical significance was defined as p<0.05.

Results

Dosing comparison between countries

- There was a significant difference between countries in the median doses of Ig received by patients treated with IVIg, SCIg and by those in the total cohort (all p<0.001).
- The Czech Republic presented with the lowest median doses of Ig in patients who received IVIg (328 mg/kg bw), SCIg (365 mg/kg bw) and in those in the total cohort (329 mg/kg bw) [Figure 1].
- The highest median doses were recorded in Greece, both in patients with IVIg (619 mg/kg bw), SCIg (655 mg/kg bw) and in patients in the total cohort (650 mg/kg bw) [Figure 1].

Comparison between treatment routes

• Both the IVIg (n=655) and SCIg (n=361) groups had similar median doses of Ig (476 and 478 mg/kg bw, respectively; p=0.56).

Comparison between age groups

- Across the three age groups, there was no significant difference in median Ig dose received by patients in the IVIg group (p=0.43) [Figure 2].
- Significant differences between the age groups were observed in the median Ig doses of patients in the SCIg group (p=0.007) and the total cohort (p=0.01). In both groups, patients aged <12 years received the highest Ig doses (Figure 2).

Comparison between patients with or without bronchiectasis

• Patients with bronchiectasis received significantly higher median Ig doses than patients without bronchiectasis, regardless of treatment route (IVIg, p<0.001; SCIg, p=0.002; total cohort, p<0.001) [Figure 3].

Conclusions

- for Ig replacement across Europe.
- policies and treatment protocols.
- infection in infants and pressure to treat.
- SCIg doses were lowest in adolescents aged adjustment to increased body weight.

